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A calculation is made of the Faraday effect in solids. By the use of a modified Eloch representation de­
veloped for the problem of Bloch electrons in a magnetic field, the conductivity tensor is expanded to first 
order in the magnetic field. The result can be separated into the intraband or free carrier Faraday effect and 
contributions corresponding to direct interband transitions. The general form of the results is in agreement 
with previous expressions, but the present calculation enables one to predict the sign and order of magnitude 
of the effect from band-edge parameters. The results are applied to the case of the direct transition in Ge 
and ITI-V compounds. 

I. INTRODUCTION 

RECENT experimental investigation of Faraday 
rotation in semiconductors1-"3 has yielded in­

formation about interband as well as free carrier effects. 
While approximate theories4-6 have predicted the types 
of singularities to be expected for various interband 
transitions, there are questions such as the sign and 
magnitude of the effects for which a rigorous theoretical 
treatment is necessary. The groundwork for such a 
treatment has been laid by Bennett and Stern,7 who 
obtained a general expression for the conductivity 
tensor in a magnetic field [our Eq. (4)]. However, there 
are difficulties encountered in applying perturbation 
theory to magnetic effects on Bloch electrons, and it is 
not clear that Bennett and Stern's final results are 
entirely correct. In this paper, we shall make use of the 
author's modified Bloch representation8 for the magnetic 
problem. Using this representation, it is possible to 
expand the conductivity tensor to first order in the 
magnetic field. The result includes both the interband 
effects due to direct transitions, and the intraband or 
free-carrier Faraday effect. The latter has previously 
been treated by Stephen and Lidiard9 and others. We 
shall be mainly interested in the interband effects and 
shall evaluate both the low-frequency limit and the 
contribution near the singularity for simple and 
complicated models, the complicated model correspond-
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ing to the direct transition in germanium and related 
materials. We shall not attempt to include exciton 
effects or to consider indirect transitions, and we shall 
limit ourselves to the low-magnetic field limit. 

The result for the interband Faraday effect is found 
to consist essentially of two terms: one due to the 
Zeeman interaction and one due to the change of the 
matrix element for the transition due to the magnetic 
field. For the case of a direct transition between non-
degenerate band edges, the singularity in the Faraday 
effect at frequencies near the energy gap is determined 
by the first term, in agreement with previous results, 
and in analogy with the atomic case. However, for 
degenerate band edges both terms contribute to the 
singularity, presumably due to quantum effects. The 
latter case is of interest in semiconductors, and the 
calculation enables one to predict the sign and order of 
magnitude of the effect from band-edge parameters. 

II. THE CONDUCTIVITY TENSOR 

The macroscopic theory of the Faraday effect has 
been developed by several authors,5,7 and the result we 
shall use is the relation between the angle 6 of rotation 
of the plane of polarization per unit length and the 
conductivity tensor <rap, For the magnetic field in the 
z direction, and for at least three-fold symmetry about 
this axis, we have 

d=2w(TXy/nc, (i) 

where n is the refractive index, and where axy= —ayx is 
linear in the magnetic field for sufficiently small fields. 

To calculate this, we begin as usual with the Hamil-
tonian for the problem of an electron in a periodic 
potential V(r) and a magnetic field H, 

(2) 

(3) 

P is the kinetic momentum operator, with A the vector 
potential for the static magnetic field, and we have 
included spin-orbit effects by virtue of the second 
term.10 s is the electron spin and the other symbols have 
their usual meanings. Now, using the methods of semi-

where 
0C(r,P,H)= (l/2w)P2+F(r)+g/?s-H, 

Y=p+(l/2mc2)sXVV+eA/c. 

i° W. Kohn and J. M. Luttinger, Phys. Rev. 96, 529 (1954). 
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classical radiation theory, the result for the conduc­
tivity tensor is 

Gap — ' S ] da$nn'fn-\ • (4) 

Here, n and nf are eigenstates of Eq. (2), fn is the Fermi 
distribution function for energy Sn, fnn

f is a shorthand 
notation for fn—fn', likewise 8nn> for Sn— Sn>, a and f3 
are vector components, and the frequency co is assumed 
to have a small negative imaginary part. 

The eigenstates of the magnetic Hamiltonian, Eq. 
(2), are rather complicated and we would rather not 
use them. At the same time, the Bloch representation 
is an inconvenient one because of the singular matrix 
elements of the vector potential. A much more con­
venient representation is the modified Bloch represen­
tation of R, which will be described briefly below. First 
let us rewrite the expression for the conductivity tensor, 
so that it is in the form of a trace, 

r(w(3C)+- f er«0=- tr|8a/>/(3C)+— / exp[i(5C+co)r]P^ 
into) [ m, 

Xexp( - iXr ) [P a , / ( 5C) ] J r . (5) 

We are now free to use the desired representation due 
to the invariance of the trace. 

We define the basis functions for the problem as 
follows. Let vnk(t) be a periodic function of r which 
reduces to the periodic part unk(r) of the Bloch function 
for zero magnetic field. (In R, unk was used instead of 
vnk, so that we are using a slight variation of the 
representation in R.) Let K = k + (e/c)X(iVk) be the 
Fourier transform of the usual free-particle kinetic 
momentum operator. Then, the new basis functions are 

</>nk= vnK* ( r )exp( ik-r ) , (6) 

where K* is the complex conjugate of K and operates on 
the k in the plane wave. We must further specify the 
order of factors, since the different components of K 
do not commute with each other, and we choose the 
completely symmetric combination. This definition of 
$ follows the treatment in Appendix I I of R. The 
principal result of R is that using these basis functions 
and the Hamiltonian 3C(r,P,H) of Eq. (2), we obtain a 
crystal momentum space Hamiltonian 

o^nn' \ « , = / drvnj3C(t, P ' + K , H)s„'«, (7) 

where p ' represents the first two terms of Eq. (3) and 
vnJ is the Hermitian conjugate of vnK. The normalization 
of the basis set is determined by the normalization 
matrix 

Nnn>( K ) = / dtVnJVn', (8) 

In Eqs. (7) and (8), we have products of symmetrized 
functions of K, which result in functions which are not 
symmetrized. I t is possible to expand such products in 
powers of H, the coefficients of which are symmetrized, 
by using the following theorem proved in R. If A (K) 
and B(K) are symmetrized functions of K, then 

A(K)B(K) = C(K), (9) 

where C ( K ) is the symmetrized function formed from 

C(k) = e x p ( - i h . V , X V ^ ( k ) 5 ( k , ) | k = k ' 
= A (k) J5 (k) - ih • VkA X VkB+ • • •, (10) 

where h=eH/2c (we are setting h=l). We need only 
carry out our expansions to first order in h for present 
purposes. Thus the normalization matrix is obtained 
from 

tf»»'(k)^ [dTvnh*vn,k-ih- fdtVkvnk*XV*vn>k. (11) 

In the present treatment, we shall choose v such that 
Nnn>(k) = 8nn>, instead of simply setting v equal to u, 
as in R. This is because we want to take the trace with 
respect to a normalized representation. The simplest 
choice is 

vnk^Unk+i E «n'k*h- / d r V k ^ k * X V k ^ k . (12) 

As in R, it is convenient to introduce the antisymmetric 
tensor 

ey8=e>Y5\h*/h, (13) 

where €7g\ is the antisymmetric third rank tensor, and 
we use summation convention. We also define 

Xnn'a=i I dxUnk"^k
aUn'k= ~i < M V k

a ^ k * ) ^ n ' k ' ( 1 4 ) 

x is the part of the coordinate operator which is diagonal 
in k. We can now write 

Vnk^Unlz+iheyS X) Un'k(%y%8)n'n- (15) 

Applying our product theorem, we expand the 
Hamiltonian to first order in h. The result is 

3e„B'(ic)= #n(K)5»»'+3e„»/(ic), (16) 

W(k) = heyl{xy,(T8+v8)}+sy8], (17) 

where 

7Tnn'5 = — / Unk* (p'+k)*Un>k , 
m J 

^nn' Onn'TTnn > 
(18) 

and the second term in Eq. (17) is the spin interaction. 
The first term of Eq. (17) reduced to /5L«H in the 
tight-binding limit, since in this limit, x becomes the 
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coordinate and v—>0. Equation (17) is the same as 
Eq. (54) of R, except for a normalization term. 

To evaluate our trace, we also need to obtain P in 
our representation 

/ * ( K ) = Un Kp'+KyUn't 

^ ( l / « ) { w " ( K ) + W / a ( K ) } . (19) 

tpply the multiplication theorem to 

T'«(k) = heyl{xy,Vk
8<ira}+5da(%

aM)l. (20) 

Again, we can apply the multiplication theorem to 
obtain 

We now have the ingredients for evaluating the 
trace in Eq. (5); namely, 3C and P as symmetric func­
tions of K given to first order in h. We further need the 
fact, used in P , that the trace of a symmetric function 
of K is the same as the trace of the same function of k. 
We know how to symmetrize the products, but may be 
concerned over the fact that functions of 3C appear 
which must be rearranged into symmetrized functions 
of K. However, it is readily shown that to first order in 
h, a function of §(K) is symmetrized [for example in 
applying Eq. (10) to ( £ ( K ) ) 2 , the first-order term 
vanishes]. The magnetic part of the conductivity ten­
sor then consists of three par ts : cra/3

(1) due to 3C', cr^(2) 

due to 7r', and cra/3
(3) due to symmetrization. 

Before calculating these, let us obtain some properties 
of the complete conductivity tensor from Eq. (4). If we 
interchange n and n\ we see that 

The first-order term in H is therefore antisymmetric 
in a and /5, and an even function of co. 

In calculating <ra^
l) and cra/3

(2), we need not concern 
ourselves with symmetrization as W and icf are already 
first order in H. For <rap

a), we need the matrix element 
of a function of 5C to first order in 36'. This can be 
shown to be 

nn' 

+ 3 C w » ' , [ F ( « » ) - F ( 5 » 0 / « » - « » ' ] . (24) 

I t is understood that for 8n= 8n', we take the limit, 
giving the derivative of P . With a little thought, we can 
apply this expansion directly to Eq. (4), first holding 
Sn> constant and letting 

F(3c)=[/(3e)-/(5»0/oe- «»*+«], (25) 

and then doing the same with Sn constant and Sn
f 

replaced by 3C. This gives 

<rap(o>)—— vpa{—w), (21) 

where we reverse the imaginary as well as the real part of 
co. The other relation we want is Onsager's relation, 
which we can prove from time reversal. The time-
reversal operator is —iayQ where 6 is the complex 
conjugation operator. Suppose we have the matrix 
element of an operator M between states 1 and 2. 
The matrix element of M between the time-reversed 
states is 

(-iarfi, M(-ia^))= {^,iayM{-i(jy)^) 

= tyiM+*T=ty*M*+i), (22) 

where M is the time-reversed operator. Now without 
the magnetic field, the Hamiltonian is invariant under 
time reversal, so that the time reversed states are also 
eigenstates of the system, p changes sign under time 
inversion, so we can see that using time reversed states 
simply interchanges a and /?, showing that the conduc­
tivity tensor is symmetric for # = 0 . With the magnetic 
field, the time-reversed states are now the eigenstates of 
the Hamiltonian with the magnetic field reversed. 
Consequently, if we change the sign of H and time 
reverse the states, a is unchanged. Therefore, 

«*»<" = - £ 
io) nn'n" 

o\s nn""n"n' »n'n 

/ J nn' Jn"n' \ 
X ( J + T r n n ^ i y W ' T l V ' n " 

\ 0 f t n T W ®n"n' 

X — ( - ^ S - ^ - ) \ . (26) 
&n'n" \&nn' 

In the first term we interchange n and n\ and in the 
second, we use time-reversed states which interchange 
a and 0 and changes the sign, since 36' changes sign 
under time inversion. This gives 

(raR
(1)=:—2ie2 ] £ TTnn'CiHn'n",^n"n[ 

1 

X 

0n'n" 

J nn' Jnn' 
(27) 

<rap(H.) = (rpa(— H ) . (23) 

• 8nn>2 — W2 Snn"2 — 0? > 

For aaR
{2) we can also use Eq. (4) giving 

e2 jnn' f x 

10) nn &nn' 

We now use this reversed states and interchange n and 
n\ which reverses co, since w; remains the same under 
time inversion, while w changes sign. Averaging the 
two terms, we have 

fnn 
cra0<2) = ~ie2 E *n»'**»'n* (« <~> P) • ( 2 9 ) 

nn' 8nn
f2 — 0)2 

Here we have made use of the antisymmetry in a and p. 
To evaluate cra/3

(3), we must use Eq. (5). Let us write 
the integrand as 

( / expp(5C+co)r]P0 (exp(-i5Cr)Pa) 
- (expp(3C+co)r]P0)(/ exp(-£JCr)P«). (30) 

file:///0ftnTW
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Now looking at Eq. (10), we notice that the integral 
over k of the first-order term in h vanishes, so that we 
can state that to this order, the trace of the product of 
two symmetric functions of K is the same as the trace of 
the same functions of k. Therefore, we need only 
symmetrize the quantities inside the parentheses in 
Eq. (30). Thus 

/ expp(3C+co)T]P0 -> / expp(5C+co) r ]P^ 

-iheyS(Vkyf+irvyf) expp(JC+co)r]Vk
5P^ (31) 

and similarly for the other factors. Expanding to first 
order in h> regrouping terms and carrying out the 
integral over r, we obtain 

e2 f V k V » 
0 V 3 ) = hey8 £ j ( V k V n n ' ^ T n ' n " 

CO nn'k [ £n n/+C0 

VkV»' 
-Trnn>P(Vk87Tn>na)n ~ | > n 7 ( V k

8 T n » ' ) ' W n a 

We can put wa to the left of xy in this equation, as the 
two terms in the symmetric product go into each under 
the operation of time inversion plus interchange of n 
and n'f noting that k changes sign. We now integrate 
the first term by parts, giving two contributions 

CTXy(2a)=ie2heapey8 £ [ ( ^ ( V k ^ - ^ 7 ) » n ' ^ n ' n * 
nn'k 

+ (7rVWVk
57Tn>/]-

(2b) = ie2h€ape78 ]£ OrVjnn'flVr/vV 
/ . 

<ST C„<2 — C O 2 

(36) 

•, (37) 

- ^ n n ' ^ V k V n ' n " ) ^ ' ] -

where we have lumped the last part of Eq. (35) into 
<r*„(2a). The gradients in aXy(2a,) can now be expanded 
by the use of the following identities, proved from the 
definitions of x and w: 

fn 

(Snn'+U))* 
(32) 

By using time inversion and interchanging some 
indices, this can be written 

*«*<*> = 7 7r w w ' a )7T„ ' / f • 
*Vk* (/»+/»') 

Vk
8x7- Vkyxd = i[_x\xy~] 

Thus, in the last part of Eq. (36) 

(38) 

(39) 
m 

E (v, . 
nn'k \ Snn

2 — 0)2 

Jnn'&nn'yVn l^n' ) 

(iraXl)nn,Vk
SWn'nf'= ( T T V ) , , 

(Sn -co2 )2 
9-<.. 

/ J(xM),'i 

P). (33) • t ( A ' ) , . , + - S , . , . (40) 
m ]• 

We have thus derived the first-order term in the 
conductivity tensor. We now wish to separate the free 
carrier and interband contributions, and also put the 
interband part into a simpler form. The free carrier 
contribution comes from o-a/3

(3), as it must, since the 
other terms involve the bands explicitly, and in fact 
is the term in Eq. (33) with n = nf. This is the only term 
which diverges as co—»0. When n=n\ the matrix 
element of TT is just v or the gradient of the energy. 
Let us calculate <rXy, making use of ea$. 

e2h 
{?xy)t.c= - — € « 0 € T « L (^k^ka&n)(y^Sn)^khJ{Sn) , 

= —€a*e 7 a£ ( V , W ^ ) ( V * 5 V / S n ) f ( S n ) . (34) 
. .2 nk 

The second form is obtained by integrating by parts. 
Equation (34) agrees with the result obtained by 
Stephen and Lidiard.9 

(2) 

For the second term in Eq. (40), interchanging n and nf 

results in the interchange of a and fi, y and 5, which 
leaves the sum in Eq. (36) unchanged. However, fnn

f 

changes sign, so that this term vanishes, as does the 
last term in Eq. (40). What is left of (rxy

i2a) can be put 
in the form 

<Txy
(2a')=--e2h€ape78 £ ('nMX'Y+iday)nn'%n'n"8irn"fiP 

n n ' n " k 

f jnn' Jnn" J 
. (41) 

S^ 2 -C0 2 £nn"2-C02J 

This is very similar to what appears in Eq. (27). We 
now have remaining <rxy

{2h) and <rxy
(sh), the interband 

part of <rxy
(z). The latter can be written from Eq. (39) 

<rxy(*h)=—ie2h6ap€y8 £ ' (l^X^nn'Tn'J 

To simplify the interband part, let us first take ax 

and substitute in our expression for x ' from Eq. (20) 

u 

x 
'V k «( / .+ / , , ) 2fnn,Snn'(vJ+Vn,

S) 

crxv
(2)=—ieiheaiieys Z l{%y,VkSTr**}nn>+ds«xnn>yl 

nn'k 

(0„.'8-«>)» - ) 
(42) 

Xirn'J- (35) 

where the prime indicates n^n', and where we have 
used the fact that the two terms in the commutator 
give the same result, again from time inversion plus 
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n <-* n'. This can be combined with <rxv
& b) to give 

<rxV
(ih)+vxv

i!lb) = 2ieiheaeeyS £ ' (*"*i')1. l,T««. ,W 
nn'k 

x-
fn 

dSn> Snn>2~002 

Let us now compare this to Eq. (41), in which we make 
the substitution, valid if Sn'^Sn" 

, * = - * -
(T— V)n>n» 

8 , ,, ^n' n" 

(44) 

The derivative in Eq. (43) is just the limit of the last 
factor in Eq. (41), divided by 8n>n", as 8n

f —> <§n", so 
that the addition of Eq. (34) changes x5— v8 to w8+v8. 
We can now combine all this with <Txy^\ in which we 
substitute the expression for 3C' from Eq. (17), un-
symmetrizing the product for now familiar reasons. 
The result is finally 

o'xy^h)= —ie2heapey8 

nn'n"k L 

/ 5 a T \ "I 1 

X 
/» U 

0 w n ' —CO Onn" —0) 

, (45) 

where the prime on the sum is to exclude the case where 
all three energies are equal. 

Equation (45) is the principle result of this paper. I t 
consists essentially of two terms, the first of which 
depends on the Zeeman interaction 3C' of a band 
electron. This is divided into an orbital and spin part, 
just as in the atomic case. The momentum matrix 
elements ira and ir? contribute to an oscillator strength 
for the transition. The second term in the square 
brackets is the contribution from the change in matrix 
elements due to the magnetic field and has its analog 
in the atomic case. 

An important point to note in Eq. (45) is that all 
terms involving equal energy matrix elements of xnn

f 

vanish from a cancellation between the two terms of 
Eq. (45). This is necessary as such matrix elements are 
not well defined and depend on the phase of the wave 
function, so that no physical quantity can depend on 
them. 

III. LIMITING CASES 

We shall now discuss the behavior of the Faraday 
effect for high and low frequencies, and in the tightly 
bound and free limits. For low frequencies and for 
bands which are completely filled or empty our expres­

sion for axy vanishes as co2. The proof, which we shall 
sketch briefly, is best begun from Eq. (27). In the limit 
as co —> 0 we can write for <xxy

a): 

(43) <rxV
m=l—i#eap X flWa3C»'; 

nn'k 
TTn"n 

&nn'& 

X 
§n 

J nn" 

Onn" 

n' *->nn" 

Jn'n" 1 

Gn'n" > 

(46) 

Using Eqs. (44) and (38), we obtain after an integration 
by parts and some interchanges of indices, 

(10) = -ie2eap E {[>«,3C'] 

+;Vk«3C/}, 
Jnn' 

(47) 

Now, for (Txy
{2\ we can write in the same limit, using the 

unsymmetric form of the product in Eq. (20) 

(20) = ie2he^ey8 £ { ( W ) x 8 

-d8axy} nn'^n' n 

Jnn' 
r (48) 

Finally, in o-xy
i3\ we use Eq. (44) for 7ra, and notice that 

the term in which the energy denominator is differ­
entiated vanishes, giving 

<r*ym=-2e2heafiey8 £ { V * ^ ^ } ^ ^ ^ — , (49) 
nn'k 8nn> 

where we have again used time inversion to un-
symmetrize the product. The three terms can now be 
combined and after considerable manipulation, the 
result is 

axyW = ie2h€apey8 t r [ ( V ^ a ) x 5 , ^ ] / . (50) 

The commutator here, however, can be shown to be a 
gradient by making repeated use of Eq. (38), so that 
the integral over k vanishes. 

The high-frequency limit can be most readily proved 
from Eq. (4) by neglecting Snn

f in the denominator. 

(<*>) = - :e«, t r [P*,P«> 
2e2hN 

(51) 
iwfvf 

where N=trf, and we have used the commutation 
properties of the P's. This is the same as the free 
electron Faraday effect. The same result can be proved 
from Eq. (45), in which the final energy denominator 
becomes fn

fn"/'8n'n"U>2, which does not depend on n. 
In the first term, therefore, were it not for the prime 
on the summation, we would have (ir(*TrP)n"n after 
summing over n. However, the 7r's commute, so that 
this vanishes from the antisymmetry between a and /3. 
The same thing occurs for the part of the second term 
not involving day/mf Therefore^ for these two terms, we 
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replace the sum by the negative of the term with all 
three energies equal. After some manipulation, we 
arrive at 

• [ - * 
X E - V ° V ^ „ V ¥ S „ -

fiayfips •]/., (52) 

which simply subtracts off the free-carrier effect and 
replaces it by the free-electron result. 

The tight-binding result can be obtained by letting x 
actually become the coordinate, and by ignoring the 
dependence of all quantities on k. The Zeeman inter­
action in Eq. (17) becomes simply /3(L+g0s)«H, and 
for 7r', we keep only the second term, which is the 
vector potential in the symmetric gauge. 

IV. APPLICATION TO BAND MODELS 

We begin with the simplest possible model, consisting 
of two spherical bands, one of which, the valence band, 
is occupied and the other of which is empty. If spin-
orbit interaction is present, it is possible to have an 
allowed transition between two such bands, and the 
rotation comes about from the Zeeman interaction for 
each band, which is characterized by a g factor. 

In Eq. (45), when co approaches the energy gap, the 
dominant energy dependence comes from the terms 
with n'=n", in which case <rxy goes as (8g—co)~1/2.1,2,4 

We shall initially include only these terms and further­
more evaluate the quantities in the curly bracket at 
the band edge. The second quantity in the curly 
bracket (which is due essentially to the effect of the 
magnetic field on the transition probabilities) vanishes 
at & = 0, and the first term can be interpreted in terms 
of the energy difference between levels due to the 
Zeeman interaction. Using these approximations and 
also using Eq. (44), we have 

nn'n" 

2fnn' 8 nn' 
X>Xn"n^/n'nn'a8n"nJk=aO • ( 5 3 ) 

( (S n ^-C0 2 ) 2 

Writing the Zeeman interaction as g(s'h/m) for the 
n'n" pair of bands, we see that the next two factors 
represent the contribution to the g factor from band n, 
which we shall denote by g'. This gives, using a matrix 
notation for the pairs of bands, and now letting n and n! 
go over conduction and valence bands, 

(ib)c =—tr E [[gn 
M2h nn'k 

•h][*. 'S'hJSnnOfc-0 

2/nn' 8 
nn X-

(Sn^-U2)2 

e2h 2 &e 
= Sg(gcgc'-gvgv') £ 

2m2 k (g„*-
(54) 

FIG. 1. Compari­
son of functions Fi, 
F2, and F. 
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We now have the problem that the frequency 
dependence of Eq. (54) is not correct for small co, as 
<Txy should vanish as co2. This can be remedied by 
subtracting off the co=0 term as was done by Boswawa, 
Howard, and Lidiard,5 but it seems more natural to 
subtract off a term depending on {8CV

2—co2)-1, as such 
terms do appear in Eq. (45). In doing this, we are 
assuming that no other bands are^involved, as well as 
evaluating certain elements at J the band edge. The 
appropriate term to subtract in the summation over k 
in Eq. (54) is 2/8cv(8cv

2—oyi). The sum over k is then 

2co2 
/2A»'* 1 / c o \ 

— = ( — ) — * i ( — ) • ( 5 5 > 

co2)2 \S„/ 16TT \8a/ 
k 8Cv(8cv2—u>2)2 

1 / 1 1 \ 

Fl(x)=J ) 
Ad-*)1/2 (i+#)i/2/ 

. ( l - * ) 1 / 2 (1+*) 1 

4 
• — [ 2 - ( l - * ) 1 ' 2 - (1+*) 1 / 2 ] . (56) 

Here we have assumed parabolic bands, and n is the 
reduced effective mass. This expression is the same as 
that obtained by Kolodziejczak, Lax and Nishina,4 

which was obtained from a semiclassical argument. The 
function Fi(x) approaches (1—x)~l12 as x approaches 1, 
and goes to zero as 5#2/16. The corresponding function 
F2(x), obtained by subtracting the zero frequency term 
from Eq. (54), is given by Eq. (56) with the second term 
replaced by — 1 . F2 goes to zero as fx2, so that at low 
frequencies, it is twice Fi(x). The functions Fi and F2 

are plotted in Fig. 1 along with another function 
described below. I t is interesting to note that the 
functions fall off much more rapidly than 1/(1 — x)~l12 

below the gap. 
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Above the gap, (1 — x)1/2 becomes imaginary, and we 
take the real part of Fh which is negative near x=l, 
and approaches about — 3 at x=l. The function then 
has a dispersion-like character, although it is 
unsyrnmetrical. 

The Faraday rotation from these two bands is 
given by 

e2h 

4cnc(2mSg) 

/ M \ 3 / 2 

Aw/ 'ege-gvgv)Fl\ 

K 
(57) 

I t can be seen that the sign of the Faraday rotation 
depends on the g factor and the contribution of the 
relevant band to the g factor. 

An attempt to study the low-frequency behavior 
would seem logical at this point, and it would be 
reasonable to consider the case in which only the two 
bands interacted. However, in this case gc'= —gv, and 
if we neglected the spin contribution to the g factor, 
the primed and unprimed g factors are the same and the 
leading term vanishes. I t , therefore, seems appropriate 
to consider a more complicated model. I t has been 
found possible to solve exactly the case of an s-like 
conduction band and a ^-like valence band without 
spin-orbit interaction whenjthe two are close enough 
that all other bands can be neglected, and also the free-
electron effective masses and g factor can be ignored. 
The band-edge basis functions are S for the conduction 
band, and iX, iY, iZ for the valence band,11 and the 
k-p Hamiltonian in this representation is 

5C= 

where 

Se/2 
kxP/m 
kyP/m 
kzP/m 

kxP/m 
-&J2 

0 
0 

kyP/m 
0 

-So/2 
0 

kzP/m 
0 
0 

So/2 

"f dtSpxX, 

(58) 

(59) 

with P assumed to be positive. 
To diagonalize the Hamiltonian, we first transform 

to a representation with one basis function 

i(rxX+rvY+rzZ), (60) 

where r=k/&, and two other basis functions in which 
r is replaced by s and t, which are unit vectors perpen­
dicular to r and to each other, and which we need not 
specify otherwise. In the new representation, the 
Hamiltonian breaks up into a 2X2 block 

3C 
r S0/2 kP/m -| 
I I > 
LkP/m - Sg/2J 

(61) 

which is uncoupled from the remaining two bands 
which are degenerate and flat with energy —• Sg/2. We 
next make a unitary transformation to diagonalize 

Eq. (61). Defining 

6g/2=o, 

kP/m=b>0, 

c==(a2+b2y!2, 

we have for this transformation 

(62) 

V, [ u+ w_~] 

U- U+J 

«±= (c±a/2c)lli. (63) 

The eigenvalues of 5C are ± c . We need the matrix 
element of n in the new representation 

m 

bt 
— 
c 

at 
— 
c 

SU+ 

tu+ 

at 
— 
c 

-bt 

c 

— SU-

— tU-

m+ 

— s^_ 

0 

0 

t* 

-h 

0 

0 

(64) 

We are now in a position to evaluate Eq. (45), if we 
use Eq. (44) for x. The result before summing over k is 

/ P \ 4 f 1 1 
<Txy=fe2h[ — J E 

W k [2c(c-a) (c+a)2 [2c(c-a) (c+a)2 

a(2c2-a2) 1 U 1 

czb2 (2c)2-u2 c ((2c)2-co2)2 
(65) 

The integrals can be done exactly and the resulting 
expression for the Faraday rotation is 

where 
2 1 

F(x) = -

^J2~\)e2h P 

m&g Wg 3nc 

2 

(d (66) 

7T (S2-\)\x(\-X2)112 

1 

t an -

(1-x2)112 

.1/2 

• tan" 
/ x \ 1 / 2 1 

\l-x/ fxCl+c [ > ( l - x ) ] 1 / 2 \l-x/ 0 ( l + x ) ] 1 / 2 

Xln[ ( l+x ) 1 / 2 +(x ) 1 / 2 ] l . (67) 

F(x) approaches (1 — x)~1/2 as x—> 1, as was true of the 
previous energy functions F\ and F2. For low fre­
quencies, we have 

F(xy 
157r(v2-l) 

-X2=0A1X2. (68) 

11 E. 0. Kane, Phys. Chem. Solids 1, 249 (1957). Notice that F(x) correctly goes to zero for low fre-
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quencies, although this is not true for the integrand 
in Eq. (65). 

In Fig. 1, the functions Fi, F2, and F are compared. 
We would have arrived a t Fi or F2 for this model if we 
had used essentially the same approximations as in the 
simple band case, so that it is heartening to note that 
the three functions do not differ drastically. In applying 
the formalism to a more realistic case, as we do in the 
next section, we shall make use of Fh which is a little 
better for this model than F2. 

An interesting feature of 6 in this case is that it is 
negative, whereas in the corresponding atomic case, 6 
would be positive. This appears to be due to the 
reversal in sign of the Zeeman interaction (3C') for the 
valence band, when it is dominated by the interaction 
with the nearby band above it. In the atomic case, there 
is a sum rule; or, in other words, L is a good quantum 
number for a spherical atom with no spin. In several 
semiconductors, the sign of 6 is reversed for interband 
transitions. 

V. APPLICATION TO SEMICONDUCTORS 

A more realistic model to which we now apply the 
above formalism is tha t of an s-like conduction band 
and a spin-orbit split valence band as is found in Ge 
and some I I I -V compounds. In this case, we will 
evaluate only the most singular term, as this itself 
turns out to be rather complicated. 

The complexity comes about because we are dealing 
with a degenerate band edge, the ^3/2 valence band 
edge. In Eq. (45), the second term in the square 
brackets will now be finite a t k—0, and so must be 
considered. The reason for this is tha t there exist 
intervalence band matrix elements of x which go as 
1/k as k —•> 0. In Eq. (45), the energy denominator goes 
as k2, and the numerator as k, giving 1/k. In the terms 
with n' and n" in the valence band and n in the conduc­
tion band, these singular matrix elements always occur 
with matrix elements of w or v going as k, so that the 
result is finite for k—>0. As was pointed out earlier, 
we need not concern ourselves with matrix elements of 
x between states of equal energy, as these cancel between 
the two terms. 

We shall outline the calculation for the case in which 
anisotropy can be neglected, since this avoids a rather 
lengthy calculation, but shall state that with an 
appropriate choice of parameters, the result is good to 
first order in the anisotropy of the valence band. The 
treatment of the valence band is based on that of 

Luttinger12 and Dresselhaus, Kip and Kittel,13 although 
we shall use a slightly different representation. The 
basis functions for the valence band are 

<j>2=i(X-iY)l3y 

03= (i/V6)L&+iY)P-2Z*l, (69) 

04= (i/VQZ- (X-iY)a-2Z$], 

with the conduction band functions given by Sa and Sp. 
The effective mass Hamiltonian for the valence band 

is given in this representation by 

^ e r a 

where 

w—v 
0 
t* 
u* 

0 
w—v 
—u 

t 

t 
—u* 
w-\-v 

0 

u 
t* 
0 

w-\-v 
(70) 

w=-
Yifc2 

2m 

V=zy-
2m 

t= — y/5y(jkx—iky)kgy 

u=-W3/2)y(kx-iky)\ (71) 

Here 71 and 7 = 7 2 = 7 3 are the parameters used by 
Luttinger.12 We will need matrix elements of 

7T=X0+7Tl , 

X~X0+X-i , 
(72) 

where the index gives the order in ft, and where the bar 
overfx indicates tha t we omit equal energy matrix 
elements. TT0 and, hence, x0 are obtained by using 
zero-order basis functions, wi is given by Vk3Cem, and 
X-i is obtained from TI through Eq. (44). 

We now wish to transform to a representation in 
which ft is in the z direction, as we did in the last 
section. This is simple for 3Cem, for which we merely 
replace the unit vectors i, j , k, by s, t, r, and assume the 
spins to be quantized in the r direction. The new 
effective-mass Hamiltonian is then diagonal with 
eigenvalues — (y{=]F2y)k2/2m. For wh we take the 
gradient of 5Cem in the original representation and then 
replace i, j , k by s, t, r. We cannot simply differentiate 
the new 3Cem, as the coefficients of the transformation 
depend on k. The 4 X 4 result is 

7 T i = -

m 

(T l-27)r 

0 

-VS7(s+it) 

0 

0 

(7i-27)r 

0 

-VJyCs-it) 

-v37( s - ; t ) 

0 

(7i+2?)r 

0 

0 

-v3f(8+it) 

0 

(7i+2 )r 
12 J. M. Luttinger, Phys. Rev. 102, 1030 (1956). 
13 G. Dresselhaus, A. Kip, and C. Kittel, Phys. Rev. 98, 368 (1955). 

(73) 
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with x-i given again by Eq. (45). In the Zeeman interaction 3C', we can now write down the part involving aLi, 
but the part involving xQ and iro involves another band parameter K introduced by Luttinger.12 The matrix of the 
interband contribution to the Zeeman interaction for the valence band is 

(74) 
— K 

m 

r 3h-r 

0 

VJh-(s+it) 

0 

0 \8h . (8- i t ) 

~3h-r 0 

0 h-r 

-v31i .(s- i t ) 2h-(s-i t) 

0 

-v31i-(s+it) 

2h- (s—it) 

- h - r j 

where 

Finally, the (6X6) matrix of 7r0 is readily obtained 
from the new basis functions. This gives us the in­
formation for the term in which n is in the conduction 
band and n' and n" are in the valence band. For the 
opposite case, we need the Zeeman interaction for the 
conduction band which is simply gcS'h/tn. We can now 
evaluate the most singular term in Eq. (45), which 
comes out 

e2hP2 

**v^ E C- (gc+lOK+10y)Fu 
3mz fc 

+ (-gc-lOK+lOy)Fhh 

- 4 ( 7 i - ? - i c ) ( F A * + F | , - 2 F « ) ] , (75) 

Fa= &+ Sj/l(Si+ <Sy)
2-co2]2, (76) 

i and j run over h for heavy and I for light. The energies 
are 

k2 

Si=Sa+—, (77) 
2\ii 

where [n is the reduced mass obtained from ac and 
Yi±27, the reciprocal effective masses for the conduc­
tion and valence bands. 

Carrying out the sum over k, we arrive at expressions 
involving the first term of Fh Eq. (56). As in the 
previous section, we correct the low-frequency depend­
ence by including the second term of Fi. The Faraday 
rotation is now given by 

0=doHFl(o)/8g) 

e2hP2 / 2 \3/2 

6oH=-
/ 2 \6IZ 

(—) W /2+MZ3/2)geff. 
24cnmz wg 

g e « = [ - (gc+ l<k)+10?(*»-l)/(*»+l) 

- 4 ( Y I - Y - / < ) (*3~1) (*- l ) / (a?+l ) (*+l ) ] , 

where 
*=W/0I/2>1-

(78) 

(79) 

(80) 

(81) 

We have written this in terms of geff to conform with 
previous theories.3 We see immediately that geff can be 
of either sign, depending on which parameters dominate. 
The last term in gen is usually small and vanishes for 
the Kane model,11 in which case J==K== J71. 

We can now relate the various quantities to band 
parameters of semiconductors. We must first define 
the average 7 of 72 and 73: 

7 = (272+373)/5. (82) 

This particular average is obtained by averaging 
<S(k)13 over the direction of k to first order in the 
anisotropy, and as stated earlier, actually gives the 
Faraday effect correctly to first order in the anisotropy. 
We now have12-14 

yi=(f+2g+2h1-3)/3, 

7=(5f+g+h)/30, 

K=(f-g-h-2)/6, 

P2/mSg=(f/2), 

(84) 

(85) 

(86) 

«c=l+/[ (3«,+2A)/3(S,+A)] , (87) 

*o=2-/[2A/3(S,+A)] . (88) 

Here /, g, hi>0 are the magnitudes of F, G, and Hi of 
Ref. 13, expressed in units of l/2m. We are assuming 
#2=0. For ac and gc, we are assuming that the conduc­
tion band interacts only with the valence bands and 
the split-off band. A is the spin-orbit splitting. Notice 
that with our choice of 7, there are only two parameters 
outside of energy gaps which enter. 

The above parameters are actually applicable to 
semiconductors possessing inversion symmetry, and 
applying them to III-V compounds as we shall, implies 
the assumption that certain antisymmetric11 parameters 
are negligible. 

The theory has been applied to several semiconduc­
tors, as shown in Table I and Fig. 2. Inserting numbers 
into Eq. (79), we can write 

0o= (5 J7 / / f tv%)[ W * 0 , / 2 + (M^)3/2]geff, (89) 

in deg/cm-kG, where Sg is in eV. In calculating geff and 
do, band parameters were used as given in the table. The 
parameters used were low-temperature values, since 
the room-temperature values are not known. However, 
the room-temperature energy gap was used to normalize 
the frequency in Fi(a)/8g). 

14 L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90 
(1959). 
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TABLE I. Comparison of theory and experiment for 0Q and geff. The experimental data are the room-temperature results in Fig. 1, 
except for the starred entry for InSb, which was the 77°K result of Smith, Pidgeon and Prosser.a 

InSb 

InAs 
Ge 

GaAs 

s« 
300°K 

0.18b 

0.36b 

0.80b 

1.41^ 

(eV) 
0°K 

0.23° 

0.41d 

0.90b 

1.53h 

A(eV) 

0.9C 

0.43d 

0.29e 

0.331 

/ 

91c 

51d 

29f 

14* 

g+hi 

10c 

6d 

V 
f5i 

J_ 

Theory 
#0 

deg/cm-kG 

- 1 6 

- 1 2 
- 4.2 

f- 1.4 
\ - 0.15 
1+ LI 

geff 

- 3 0 

-22 .5 
-12 .6 

f- 3.7 
- 0.4 

1+ 2.9 

Experiment 
0o 

deg/cm-kG 

/ - 30 
\ - 2 0 * 

-10 .5 
- 2.6 

+ 1.33 

geff 

r - 5 7 . 
\ - 3 8 * 

19.5 
- 7.8 

+ 3.6 

» See Ref. 18. 
*>S. Zwerdling, B. Lax, and L. M. Roth, Phys. Rev. 108, 1402 (1957). 
• S . Zwerdling, W. H. Kleiner, and J. P. Theriault, Suppl. J. Appl. Phys. 32, 2118 (1961). 
d See Ref. 15. 
•A. H. Hahn, Phys. Rev. 97, 1647 (1955). 
* J. J. Stickler, H. J. Zeiger, and G. S. Heller, Phys. Rev. 127, 1077 (1962). 
«T. S. Moss, Suppl. J. Appl. Phys. 32, 2136 (1961). 
h M. A. Sturge, Phys. Rev. 127, 768 (1962). 
* See Ref. 16. 
J See Ref. 2. 

For Ge and InSb, the band parameters are well 
known. For InAs and GaAs, / was determined from the 
electron mass and energy gaps through Eq. (87), while 
g+hi was obtained from intervalence band optical 
absorption measurement of Matossi and Stern15 and 
Braunstein.16 For GaAs, this corresponds to the lowest 
value of g+hi given. The others are included in order 
to obtain the experimental sign of the effect, as will be 
discussed below. 

The experimental points in Fig. 2 are obtained by 
subtracting off the free carrier Faraday effect and 
normalizing by the value of 0o, given in the table under 
"experimental." In Ge, a constant value of 4°/kG-cm 
was subtracted off from the data, to account for some 
additional rotation which has been attributed to an 
L point transition.17 In GaAs, a constant rotation of 
0.62°/kG-cm was subtracted off. The free carrier 
Faraday effect for this case actually appears to extrapo­
late to a finite value at zero wavelength (see Ref. 2, 
Fig. 2). This may be due to inter conduction band 
transitions. For InSb, we have also included the 77°K 
results of Smith, Pidgeon and Prosser.18 Their fit was 
to i^O^i), and we merely fitted Fi(x) at one point 
dc^) to obtain 0O. 

VI. DISCUSSION 

The theoretical and experimental values of do follow 
the same general trend with energy gap, and for the 
first three materials, the sign and order of magnitude 
of the effect are predicted by the theory, the latter to 
better than a factor of two. From the theoretical result 
for geff, we expect that as the gap increases and the 

15 F. Matossi and F. Stern, Phys. Rev. I l l , 472 (1958). 
16 R. Braunstein, Phys. Chem. Solids 8, 280 (1959). ^ 
1 7 1 . M. Boswarva and A. B. Lidiard, in Proceedings of the 

International Conference on Physics of Semiconductors, Exeter 
(The Institute of Physics and the Physical Society, London, 
1962), p. 308. 

18 S. D. Smith, C. R. Pidgeon, and V. Prosser, in Ref. 17, p. 301. 

parameter / becomes smaller with respect to g+hh the 
Faraday effect becomes positive. For GaAs, with 
g+hi=5, the theory does not yet give the sign change. 
This will be discussed further below. However, we can 
understand in the light of this the fact that larger gap 
semiconductors have positive interband rotations. 
InP, GaP, AlSb, CdS, and Si all have positive 

• InSb 
A InAs 
oGe 
x GaAs 

y9« 

0.45 0.5 1.0 

FIG. 2. Room-temperature experimental data fit to the function 
Fi(ca/S>g). The value of 0O used is given in Table I. The sources of 
the results are given in Refs. 1 (InSb), 2 (InAs and GaAs), and 
3 (Ge). 
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rotations19-21 (Si has a different k=0 conduction band 
structure, and so is perhaps not comparable except in a 
general way). Since not much information is available 
as to the parameters for these materials, we have made 
no attempt at a detailed fit. The only one of these with a 
smaller gap than GaAs (1.29 eV at 0°K) is InP, for 
which the rotation is similar in magnitude to that in 
GaAs. 

It is clear from our results that the negative sign is 
due to the reversed sign of the Zeeman interaction in 
the valence band, due to the close interaction with the 
conduction band. It is not due to the negative g factor 
in the conduction band, as suggested by Cardona,2 since 
Eq. (80) shows that a negative gc gives a positive 
contribution to geff (due to a negative gc

f). 
Uncertainties in the calculation include the approxi­

mation leading to the function Fh and the use of low-
temperature valence band parameters. In this connec­
tion, we should note that better agreement is obtained 
from the 77° data of Smith, Pidgeon, and Prosser,18 

although their 5° data seem to give a larger geff. There 
is an additional uncertainty in the expression for geu, 
due to the fact that there are terms of both signs in it, 
which are 3 or 4 times the magnitude of the final result. 

One thing we have neglected in the calculation is 
exciton effects. Wallis and Mitchell17 have presented 
evidence that these effects are important in the inter-
band Faraday effect in Ge. However, Wallis and 
Mitchell's results are concerned mainly with effects 
quite near the energy gap. It seems reasonable to 
neglect them at energies less than a few times the 
binding energy, which is the range we are dealing with 
here. 

We have also neglected the contribution from the 
split-off band in Ge and GaAs, although this is probably 
partly taken care of by the constant rotation which was 
subtracted. This contribution is difficult to estimate 
because cross terms between the valence bands are 
important, and for this reason, we suspect that the 
relative contribution of the split-off band plus cross 
terms, while important, is less than that calculated by 
Boswarva and Lidiard.17 

Boswarva and Lidiard have also calculated the 
interband Faraday effect for Ge due to the first two 
valence bands. Their calculation involves summing the 
contribution of the valence band Landau levels, and 
should be equivalent to ours, although their method is 
more difficult to apply then ours. Their final numerical 
result does not seem to agree with ours, but this appears 
to be a matter of units. 

The case of GaAs deserves special discussion. It had 
been hoped that the theory could predict the reversal of 
sign for this compound as compared with smaller gap 

19 T. S. Moss, A. K. Walton and B. Ellis, in Ref. 17, p. 295. 
20 M. Balkanski and J. J. Hopfield, Phys. Stat. Sol. 2,623 (1962). 
2i H. Kimmel, Z. Naturforsh. 12, 1016 (1957). 
22 D. L. Mitchell and R. F. Wallis (unpublished). 

semiconductors. However, while the order of magnitude 
is predicted, the sign is sensitive to the value of g+h, 
and a rather large value (~9) is necessary to give the 
correct sign. [The variation of gett with (g+h) is 
mainly through K, and dgeu/d(g+hi) is approximately 
5/3.] Although the uncertainty involved in subtracting 
two larger numbers (~10) to obtain the theoretical 
gets would not lead us to take the result too seriously, 
it is interesting to speculate on the consequences of 
such a large value. 

First, let us clarify the experimental evidence on this 
parameter, which is related to the heavy hole mass by 

m/tnh=(3/S)(g+hi)-l. (90) 

Ehrenreich23 has obtained the values 0.68 and 0.12 
for the heavy and light masses from the electron mass 
and from the intervalence band optical absorption 
results of Braunstein15 which give the mass ratios 
mh/mz=3.3S and mz/mi=1.7, where mz is the mass of 
the split-off band. The latter is given by 71 except that / 
should be decreased in proportion to the increased gap. 
Ehrenreich neglected g+h in calculating mh so that 
his result is probably too large. We can calculate g+h 
from / and the mass ratios using Eqs. (86) and (87). In 
fact, we have too much information, but a value of 
g+h of about 5 seems to be the most consistent, giving 
mh/mz=3.2, fn3/tm= 1.85, and also mi/m=0.0S5, 
mh/m=0.50. This value of g+hi is the first entry in the 
table, and results in a negative geff. 

The parameter hi, which we assume much larger than 
g,n is determined by the interaction of the valence band 
with the Ti5 conduction band. A value of h smaller than 
that in Ge is expected according to the calculation of 
Callaway,24 because the antisymmetric potential present 
in the compound would repel the Ti5 conduction band 
relative to the valence band. Callaway predicts this gap 
to be 4.5 eV compared with 3.2 for Ge interpreted from 
optical data.25 

A value of 9 for g+hi would imply a smaller value for 
this gap, perhaps as small as 2 eV. There is in fact some 
optical data which could support such a small gap. 
There is structure between 2 and 3 eV in the reflectivity 
of GaAs as measured by Greenaway,26 which has been 
tentatively assigned to an L-point transition. There is 
also the absorption measured in ^-type GaAs by 
Spitzer and Whelan,27 beginning at 0.25 eV and leveling 
off at 0.5 eV. This could be partly due to a direct 
transition28 between T2 and Tu as it varies little with 
temperature. Pressure measurements could shed light 
on this matter.28 If such measurements were to imply 

23 EL Ehrenreich, Phys. Rev. 120, 1951 (1960). 
24 J. Callaway, J. Electron. 2, 330 (1957). 
25 D. Brust, J. C. Phillips and F. Bassani, Phys. Rev. Letters 9, 

94 (1962). 
26 D. C. Greenaway, Phys. Rev. Letters 9,97 (1962). 
27 W. G. Spitzer and J. M. Whelan, Phys. Rev. 114, 59 (1959). 
28 W. Paul, Suppl. J. Appl. Phys. 32, 2082 (1961) (and per-

sonal communication). 
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Spectral line shapes of the radiation produced by band-to-band recombination of excess carriers in semi­
conductors are calculated under the assumption that the momentum matrix element is the same for all 
initial and final states, i.e., that there is no momentum selection rule. The peak of the stimulated radiation 
falls at a lower photon energy than does the peak of the spontaneous radiation, except when T—0°K, Some 
numerical results are given for simple parabolic bands, specifically for the case of electron injection into 
^-type GaAs, and are used to deduce the temperature dependence of the forward current which is necessary 
to maintain a fixed gain in the active region of a diode. The result is closely related to the temperature 
dependence of the threshold current in an injection laser, and gives reasonable agreement with experiment. 
The effect of a conduction band tail is briefly considered. 

I. INTRODUCTION 

RADIATIVE recombination is one of the principal 
processes by which electrons and holes present in 

excess of the thermal equilibrium concentrations can 
recombine in semiconductors, and has been extensively 
studied.1-8 In most cases considered heretofore the 
radiative recombination has been primarily spontaneous 
radiation. However, the discovery of injection lasers9-11 
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experiment, and is illustrated by a number of examples. 

We restrict our attention to the case of band-to-band 
transitions, because we believe this case to be the best 
approximation in semiconductors in which substantial 
concentrations of shallow impurities are present, causing 
the impurity levels to merge with adjacent bands. 
Other models can, of course, be more applicable in 
other cases. For example, transitions between states of 
isolated impurities are responsible for the red emission 
of the ruby laser, and such systems have been studied 
in considerable detail.14 Transitions between a band 
and one or more impurity levels may also be important, 
and results for this case have been obtained by Eagles15 
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